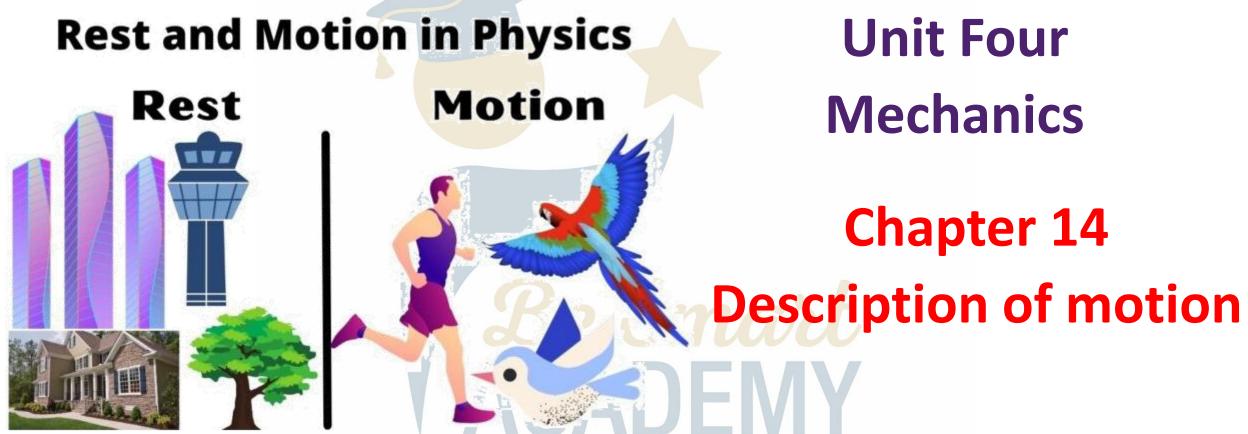
Physics – Grade 10



Prepared & Presented by: Mr. Mohamad Seif

1 Introduction about mechanics

2 Definition of motion

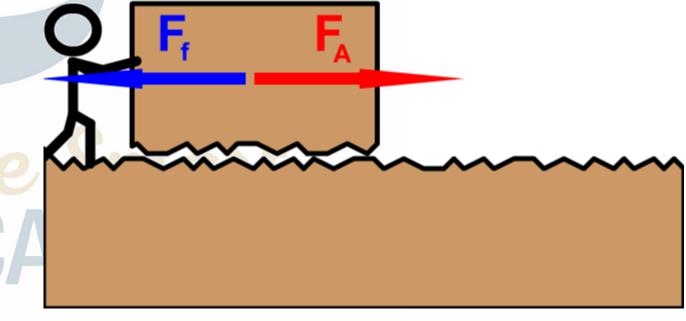
2 Space and time frames of reference:

Definition of mechanics

Be Smart ACADEMY

What is "Mechanics"?

Mechanics is a branch of physics that studies the state (motion or rest) of an object (or system) and taking into consideration its causes.



Definition of mechanics

Kinematics

Concerned with Concerned with Concerned with the motion without reference to the cause of motion

Statics

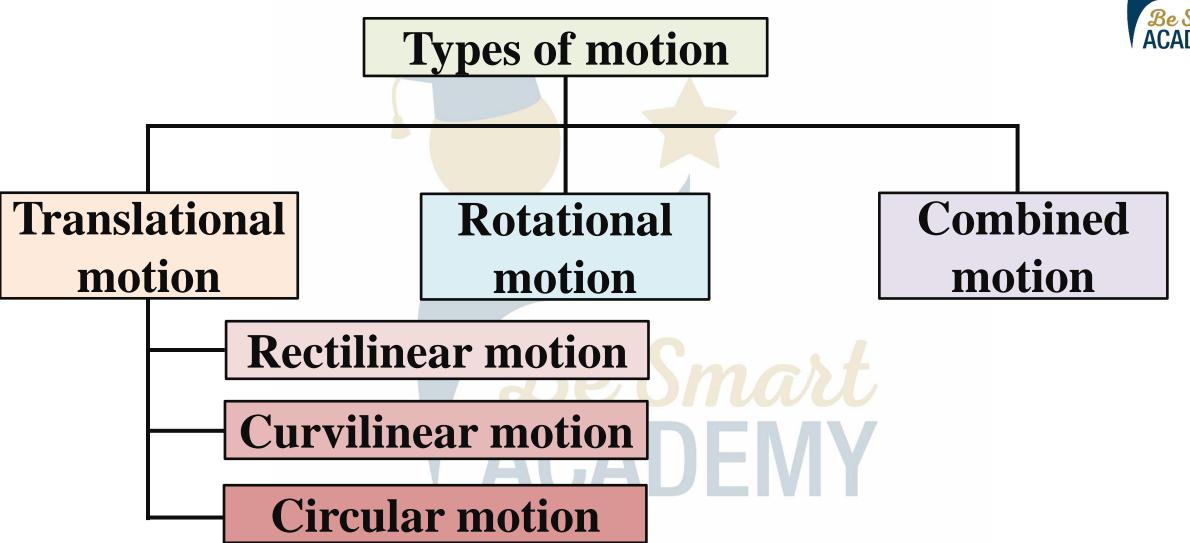
Mechanics

system during (force, energy...) static equilibrium

Dynamics

the description of analysis of loads study of motion (forces, torque...) with reference to acting on a the cause of motion

Definition of mechanics



Definition of motion

Be Smart ACADEMY

Rest & motion:

The terms "at rest" or "in motion" are relative and depend on the chosen reference.

The same object may be at rest with respect to a certain observer and in motion with respect to another.

B is at rest relative to A
C is in motion relative to A
C is in motion relative to B

Definition of motion

Motion is defined as a change of position of a body relative to a reference point.

Trajectory of a moving object:

The trajectory of motion is the path described by this object during its motion.

The trajectory of rectilinear motion is straight line.

Space and time frames of reference:

The space frame of reference is used to determine the position and the distance covered by a moving object in this frame.

The origin of the reference is the point of observation of the motion.

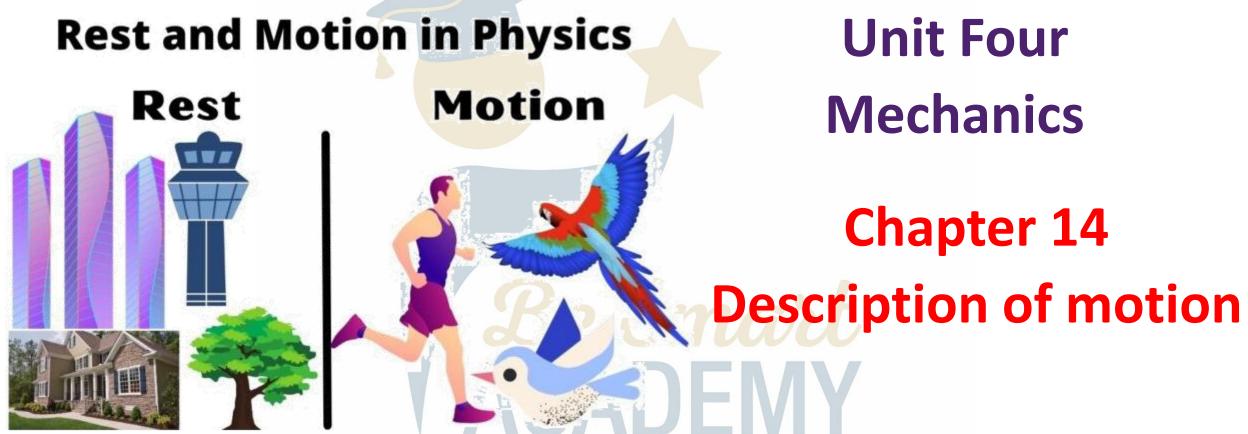
The space reference system of a particle moving on a rectilinear trajectory is denoted by $(0, \vec{t})$.

Space and time frames of reference:

- The choice of a time reference is used to know the instant of an event and to determine the duration of motion.
- The time $t_0 = 0s$ is taken to be the origin of time of most events, where it indicates the instant of starting the studying of the motion and not necessarily the instant of starting the motion.



Physics – Grade 10

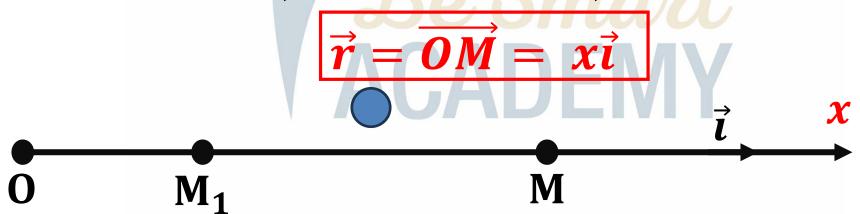


Prepared & Presented by: Mr. Mohamad Seif

Distance and Displacement

ACADEMY

- Be Smart ACADEMY
- The rectilinear motion of a body M is studied with respect to the frame $(0, \vec{i})$, of origin O.
- The position of the body at the origin of time $t_0 = 0$, is at O such that $x_0 = 0$ and its position at an instant t, is x = OM.
- The position vector, at an instant t, is:



Characteristic of the position vector $\overrightarrow{OM_1}$:

- Origin: C
- Line of action: The horizontal line holding O and M_1

- Direction: The motion is from O to M_1 : To right
- Magnitude: $|\vec{r}_1| = |\overrightarrow{OM_1}|$

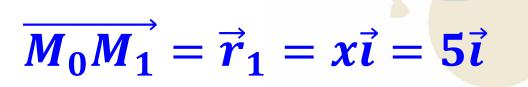
Be Smart ACADEMY

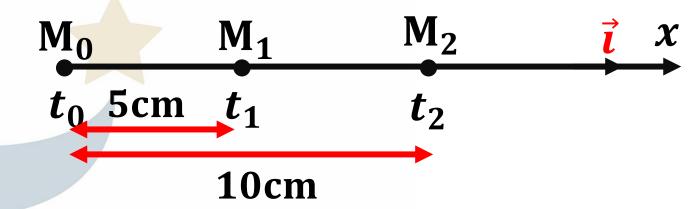
Application 1:

- Consider a particle moving along the x-axis and starting from M_0 at $t_0 = 0$.
- The particle passes through M_1 then M_2 as shown in the figure.
- 1.What is the nature of motion? Justify. t_0 t_0 t_1 t_2 t_2 t_3 t_4 t_5 t_6 t_6 t_7 t_8 t_8 t_9 t_9

Since the particle moves on a straight line, the motion is rectilinear

2. Determine the position vector $\overline{M_0M_1}$.





3. Determine the position vector $\overline{M_0M_2}$.

$$\overrightarrow{M_0M_2} = \overrightarrow{r}_2 = x\overrightarrow{i} = 10\overrightarrow{i}$$

 M_2

 M_1

10cm

5. Determine the characteristics of the position vector $\overline{M_0M_1}$.

- Origin: M_0
- Line of action:

The horizontal line holding M_0 and M_1

• Direction: To the right

• Magnitude:

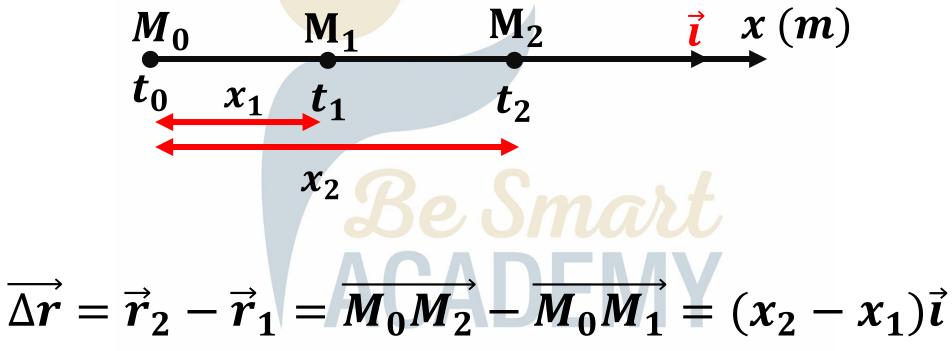
$$|\vec{r}_1| = |\overrightarrow{M_0 M_1}| = 5cm$$

 t_0 5cm

Be Smart ACADEMY

The displacement:

The displacement is the change in position vector between two points.

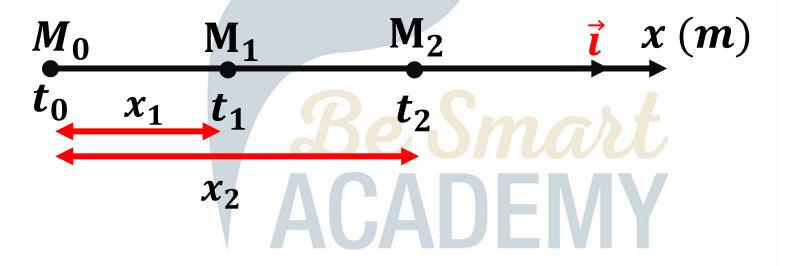


Be Smart ACADEMY

Distance:

The actual distance covered by a moving particle in an interval of time.

The distance is a scalar quantity, and its SI unit is meter [m].



$$|\Delta x| = |\Delta \overrightarrow{r}| = |\overrightarrow{M_0 M_2} - \overrightarrow{M_0 M_1}| = |x_2 - x_1|$$

Application 2:

1.Determine the displacement vector.

$$\overrightarrow{\Delta r} = \overrightarrow{r}_2 - \overrightarrow{r}_1 = \overrightarrow{M_0 M_2} - \overrightarrow{M_0 M_1} \qquad x_1 = 1.3m$$

$$\overrightarrow{\Delta r} = (x_2 - x_1)\overrightarrow{i} \qquad x_2 = 2.5m$$

$$\overrightarrow{\Delta r} = (2.5 - 1.3)\overrightarrow{A}CADEMY$$

$$\overrightarrow{\Delta r} = \mathbf{1.2}\overrightarrow{i}$$

$$\overrightarrow{\Delta r} = \mathbf{1.2}\overrightarrow{i}$$

2.Determine the distance covered during the motion of the particle M between the two instants.

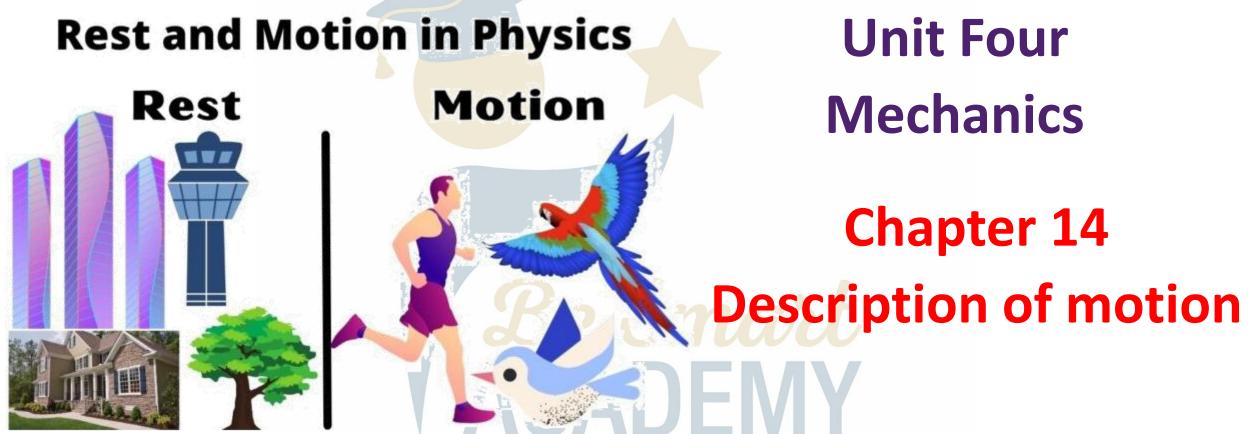
$$|\Delta x| = |\Delta \vec{r}| = |M_0 M_2 - M_0 M_1|$$

$$= |x_2 - x_1|$$

$$|\Delta x| = |\Delta \vec{r}| = 1.2m \text{ GADE}$$



Physics – Grade 10



Prepared & Presented by: Mr. Mohamad Seif

1 To calculate average & instantaneous speed

2 To determine the average & instantaneous velocity vector

Be Smart ACADEMY

To study the motion of a moving particle M, the positions of the particle designated by $M_0 \dots M_5$ are taken over regular time intervals τ .

M_0	M_1	M ₂	M_3	M_4	$M_5 \vec{l} x$
	+	to	t -	+	<i>t</i> _
t_0	<i>L</i> ₁	ι_2	<i>L</i> 3	L ₄	ι_5

We must distinguish between the following:

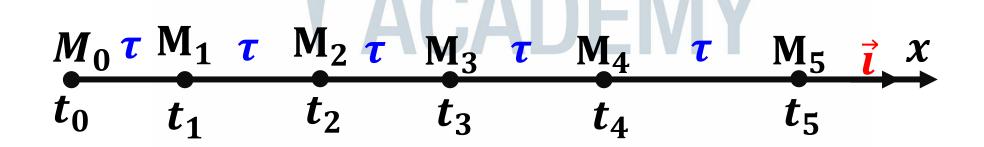
- 1. The average speed.
- 2.Instantaneous speed. A GALE | |
- 3. The average velocity vector.
- 4. The instantaneous velocity vector

Be Smart ACADEMY

Average speed (V_{av}):

The average speed (m/s) between two points is the ratio of the total distance traveled to the total duration needed to travel this distance. $V_{av} = \frac{\text{distance traveled}}{\text{needed time}} = \frac{d}{\Delta t}$

Consider a puck moving on an air table, with a time interval between two consecutive points is τ



$M_2 \& M_4$ is:

$$V_{2,4} = \frac{M_2 M_4}{t_4 - t_2} = \frac{M_2 M_4}{4\tau - 2\tau}$$

The average speed between The average speed between $M_1 \& M_5$ is:

$$V_{1,5} = \frac{M_1 M_5}{t_5 - t_1} = \frac{M_1 M_5}{5\tau - \tau}$$

$$V_{2,4} = \frac{M_2 M_4}{2\tau}$$
 ACADE $V_{1,5} = \frac{M_1 M_5}{4\tau}$

Be Smart ACADEMY

Instantaneous speed (V):

The average speed is not accurate to describe the motion. The Instantaneous speed (V) at instant t is the speed of the moving body at specific time (t).

$$V_{4} = \frac{M_{3}M_{5}}{t_{5} - t_{3}} = \frac{M_{3}M_{5}}{2\tau} \quad ACADE \quad V_{2} = \frac{M_{1}M_{3}}{t_{3} - t_{1}} = \frac{M_{1}M_{3}}{2\tau}$$

$$V_3 = \frac{M_2 M_4}{t_4 - t_2} = \frac{M_2 M_4}{2\tau}$$

Application 3:

- A puck moves without initial speed on an air table. The time interval between two consecutive points is $\tau = 60$ ms.
- 1.Determine the average speed of the puck between $V_{1,2}$, $V_{2,5}$, and $V_{1,5}$.
- 2. Determine the instantaneous speeds V_3 , & V_4 of the puck at the instants t_3 , & at t_4 .

M_0 M_1	M ₂	M_3	M ₄	M ₅
M_0M_1	M_1M_2	M_2M_3	M_3M_4	M_4M_5
0.5cm	1.5cm	2.5cm	3.5cm	4.5cm

1.Determine the average speed of the puck between

 $V_{1,2}, V_{2,5}$, and $V_{1,5}$.

$M_0 au M_1$	τ M_2 τ	M ₃ τ	M ₄ T	M ₅
M_0M_1	M_1M_2	M_2M_3	M_3M_4	M_4M_5
0.5cm	1.5cm	2.5cm	3.5cm	4.5cm

$$V_{1,2} = \frac{M_1 M_2}{t_2 - t_1} = \frac{M_1 M_2}{\tau}$$
 $V_{1,2} = \frac{(1.5 \times 10^{-2})m}{(60 \times 10^{-3})s}$

$$V_{1,2} = 0.25m/s$$

$$M_0$$
 τ M_1 τ M_2 τ M_3 τ M_4 τ M_5

M_0M_1	M_1M_2	M_2M_3	M_3M_4	M_4M_5
0.5cm	1.5cm	2.5cm	3.5cm	4.5cm

$$V_{2,5} = \frac{M_2 M_5}{t_5 - t_2}$$

$$V_{2,5} = \frac{M_2 M_5}{3\tau}$$

$$V_{2,5} = \frac{(2.5 + 3.5 + 4.5) \times 10^{-2}}{(3 \times 60 \times 10^{-3})s}$$

$$V_{2,5} = \frac{10.5 \times 10^{-2}}{(180 \times 10^{-3})}$$

$$V_{2.5} = 0.583m/s$$

M_0 τ	M_1	τ	M_2	τ	M_3	τ	M_4	τ	M_5

M_0M_1	M_1M_2	M_2M_3	M_3M_4	M_4M_5
0.5cm	1.5cm	2.5cm	3.5cm	4.5cm

$$V_{1,5} = \frac{M_1 M_5}{t_5 - t_1}$$

$$V_{1,5} = \frac{M_1 M_5}{4\tau}$$

$$V_{1,5} = \frac{(1.5 + 2.5 + 3.5 + 4.5) \times 10^{-2}m}{4 \times 60 \times 10^{-3}s}$$

$$V_{1,5} = \frac{12 \times 10^{-2} m}{240 \times 10^{-3} s}$$

$$V_{1.5} = 0.5 m/s$$

2. Determine the instantaneous speeds V_3 & V_4 of the

puck at the instants t_2 , & at t_3 .

τ	M ₁	τ	M ₂	τ	M ₃	τ	M ₄	τ	M ₅	
	M_0 M	1 ₁	N	M_1M_2		M_2M	13	M_3M_4	_L M	$_4M_5$
	0.5c	m		L.5cm		2.5c	m	3.5cm	4.	5cm

$$V_3 = \frac{M_2 M_4}{t_4 - t_2}$$

$$V_3 = \frac{(1.5 + 2.5) \times 10^{-2} m}{(2 \times 60 \times 10^{-3})s}$$

 $V_3 = 0.333m/s$

 M_0 τ M_1 τ M_2 τ M_3 τ M_4 τ M_4

M_0M_1	M_1M_2	M_2M_3	M_3M_4	M_4M_5
0.5cm	1.5cm	2.5cm	3.5cm	4.5cm

$$V_4 = \frac{M_3 M_5}{t_5 - t_3}$$

$$V_4 = \frac{M_3 M_5}{2\tau}$$

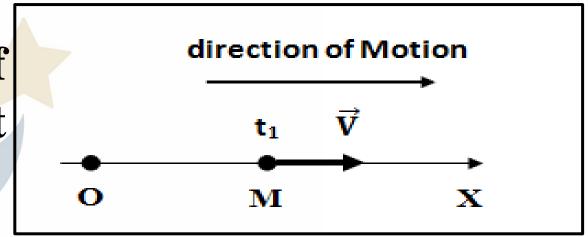
 $V_4 = \frac{(2.5 + 3.5) \times 10^{-2} m}{(2 \times 60 \times 10^{-3})s}$

$$V_4 = 0.5 m/s$$

Be Smart ACADEMY

The velocity vector (\overrightarrow{V}) :

The velocity vector is the rate of change of position with respect to time.



Velocity (m/s) represents how fast an object moves with direction.

The velocity is a vector whose magnitude is called speed, and its sign depends on the direction of motion $\vec{V} = V \cdot \vec{\iota}$.

Be Smart ACADEMY

The average velocity vector (\vec{V}_{av}) :

The average velocity measures the variation of the position vector of a moving particle during an in interval of time. The average velocity is represented by the vector:

$$\vec{V}_{av} = \frac{\Delta \vec{r}}{\Delta t} = \frac{(x_2 - x_1) \cdot \vec{t}}{t_2 - t_1}$$

Be Smart ACADEMY

The instantaneous velocity vector (\vec{V}_{av}) :

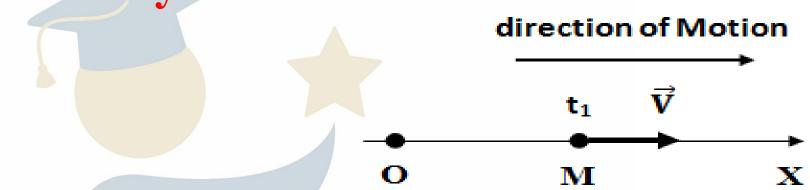
The instantaneous velocity measures the variation of the position vector of a moving particle w. r. t time at a given instant.

The instantaneous velocity is represented by the vector:

$$\overrightarrow{V} = V. \overrightarrow{i}$$

Where V is the instantaneous speed.

Characteristics of velocity vector:



Origin	point M
Line of action	horizontal and rectilinear.
Direction:	To the right
Magnitude:	Is the speed at point M, to be calculated

Application 4: A puck moves without initial speed on an air table as shown.

- The time interval between two consecutive points is $\tau = 60ms$.
- 1. Calculate the instantaneous speed at M_3 .
- 2. Determine the characteristics of the velocity vector at t_3 .

$\mathbf{M_0}$	$\mathbf{M_1}$	M_2	M_3	$\mathbf{M_4}$	$\mathbf{M_5}$
				100 T.	

M_0M_1	M_1M_2	M_2M_3	M_3M_4	M_4M_5
0.5cm	1.5cm	2.5cm	3.5cm	4.5cm

$$\tau = 60ms = (60 \div 1000) = 0.06 s$$

1. Calculate the instantaneous speed at M_3 .

M ₀	M ₁	M ₂	M_3	14	M ₅
N	M_0M_1	M_1M_2	M_2M_3	M_3M_4	M_4M_5
C).5cm	1.5cm	2.5cm	3.5cm	4.5cm

$$V_3 = \frac{M_2 M_4}{t_4 - t_2}$$
 \searrow $V_3 = \frac{M_2 M_4}{2\tau}$ \searrow $V_3 = \frac{(4 \times 10^{-2})m}{(2 \times 0.06)}$

$$V_3 = 0.333m/s$$

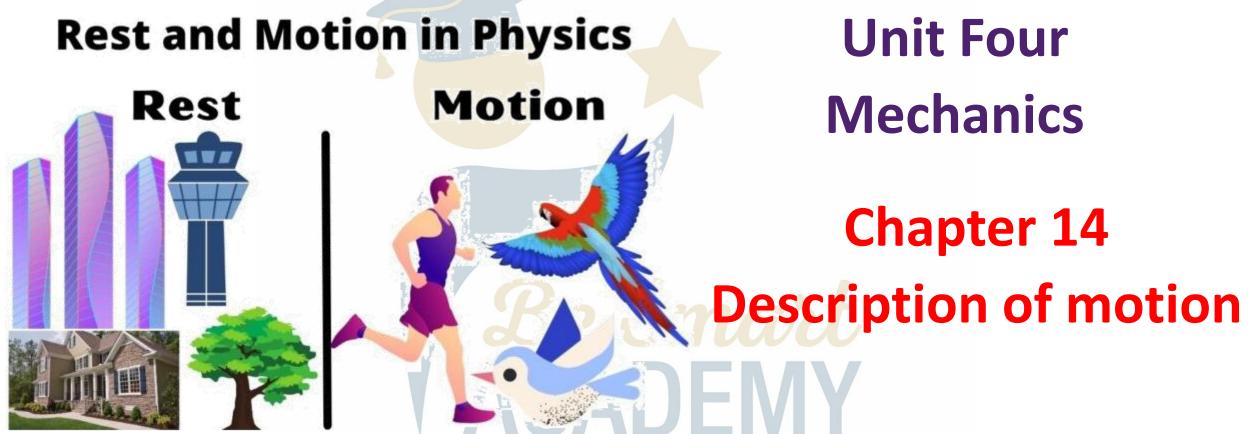
$$\tau = 0.06 s$$
; $V_3 = 0.375 m/s$

2. Determine the characteristics of the velocity vector at t_3 .

Origin	point M ₃
Line of action	horizontal and rectilinear.
Direction:	To right
Magnitude:	$V_3 = 0.333m/s$



Physics – Grade 10



Prepared & Presented by: Mr. Mohamad Seif

1 To calculate average & instantaneous acceleration

2 To determine the characteristics of acceleration vector.

Be Smart ACADEMY

Acceleration (a):

Acceleration is a quantity used to describe the variations of the speed of a moving particle with respect to time.

$$a = \frac{change of velocity}{change of time} = \frac{\Delta V}{\Delta t}$$

- The acceleration expressed in is m/s^2
- 1.Average acceleration. A GADEMY
- 2.Instantaneous acceleration.
- 3. Acceleration vector (average and Instantaneous).

Average acceleration:

Average acceleration is the variation of the speed of a moving particle between two instants with respect to time.

$\mathbf{M_0}$	$\mathbf{M_1}$	M_2	M_3	$\mathbf{M_4}$	$\mathbf{M_5}$

$$\mathbf{a}_{\mathrm{av}} = \frac{\Delta V}{\Delta t} = \frac{V_f - V_i}{t_f - t_i}$$

$$\mathbf{a}_{\mathrm{av}} = \frac{\Delta V}{\Delta t} = \frac{V_f - V_i}{t_f - t_i}$$

The average acceleration The average acceleration between M₁& M₄ is:

between M₁& M₄ is:

$$a_{1,4} = \frac{V_4 - V_1}{t_4 - t_1}$$
 AGAIL $a_{2,5} = \frac{V_5 - V_2}{t_5 - t_2}$

Average acceleration vector (\vec{V}_{av}) :

Average acceleration vector is a vector represent the variation of the speed of a moving particle between two instants with respect to time.

$$\vec{a}_{av} = \frac{\Delta \vec{V}}{\Delta t} = \frac{\vec{V}_f - \vec{V}_i}{t_f - t_i}$$

Application 5: The figure below shows the positions of a puck during an intervals of time $\tau = 60ms$.

$$G_0 \stackrel{\leftarrow}{\downarrow} G_{12.7cm} G_2$$
 3.9cm G_3 5.1cm G_4 6.3cm G_5 7.5cm G_6 x

- At $t_0 = 0s$, the puck starts from G_0 and is initially at rest.
- 1. Calculate the instantaneous speeds V_1 ; V_3 and V_5 .
- 2. Calculate the average acceleration between $G_1\& G_3$ and between $G_3\& G_5$.
- 3. Deduce the average acceleration vector between $G_1\&G_3$.

$$\tau = 60ms = (60 \div 1000) = 0.06 s; V_0 = 0$$

$$G_0 = G_{12.7cm} G_2 = 3.9cm = G_3 = 5.1cm = G_4 = 6.3cm = G_5 = 7.5cm = G_6 = \chi$$

1. Calculate the instantaneous speeds V_1 ; V_3 and V_5 .

$$V_{1} = \frac{G_{0}G_{2}}{t_{2} - t_{0}}$$

$$V_{1} = \frac{G_{0}G_{1} + G_{1}G_{2}}{2\tau - 0}$$

$$V_{1} = \frac{G_{0}G_{1} + G_{1}G_{2}}{2\tau - 0}$$

$$V_{1} = \frac{4.2 \times 10^{-2}}{2 \times 0.06}$$

$$V_1 = 0.35 m/s$$

$$\tau = 60ms = (60 \div 1000) = 0.06 s; V_0 = 0$$

$$G_0 \subseteq G_{12.7cm} G_2$$
 3.9cm G_3 5.1cm G_4 6.3cm G_5 7.5cm G_6 χ

1. Calculate the instantaneous speeds V_1 ; V_3 and V_5 .

$$V_3 = \frac{G_2G_4}{t_4 - t_2} \qquad V_3 = \frac{G_2G_3 + G_3G_4}{4\tau - 2\tau}$$

$$V_3 = \frac{(3.9 + 5.1) \times 10^{-2}}{2\tau} \longrightarrow U_3 = \frac{9 \times 10^{-2}}{2 \times 0.06}$$

$$V_3 = 0.75 m/s$$

$$\tau = 60ms = (60 \div 1000) = 0.06 s; V_0 = 0$$

$$G_0 \stackrel{\mathsf{G}}{=} G_{12.7 \text{cm}} G_2$$
 3.9cm G_3 5.1cm G_4 6.3cm G_5 7.5cm G_6 χ

1. Calculate the instantaneous speeds V_1 ; V_3 and V_5 .

$$V_{5} = \frac{G_{4}G_{6}}{t_{6} - t_{4}}$$

$$V_{5} = \frac{G_{4}G_{5} + G_{5}G_{6}}{6\tau - 4\tau}$$

$$V_{5} = \frac{(6.3 + 7.5) \times 10^{-2}}{2\tau}$$

$$V_{5} = \frac{13.8 \times 10^{-2}}{2 \times 0.06}$$

$$V_5 = 1.15 m/s$$

$$\tau = 0.06 s$$
; $V_0 = 0$; $V_1 = 0.35 m/s$; $V_3 = 0.75 m/s$; $V_5 = 1.15 m/s$

2. Calculate the average acceleration between $G_1 \& G_3$ and between G₃ & G₅

$$a_{1,3} = \frac{V_3 - V_1}{t_3 - t_1} \implies$$

$$a_{1,3} = \frac{V_3 - V_1}{t_3 - t_1} \implies a_{1,3} = \frac{0.75 - 0.35}{2\tau} \implies a_{1,3} = \frac{0.4}{2 \times 0.06}$$

$$a_{1,3} = \frac{3.11}{2 \times 0.06}$$

$$a_{1,3} = 3.33m/s^2$$

$$a_{3,5} = \frac{V_5 - V_3}{t_5 - t_2}$$

$$a_3 = \frac{1.15 - 0.75}{1.15 - 0.75}$$

$$a_{3,5} = \frac{3.1}{2 \times 0.06}$$

$$a_{3.5} = 3.33 m/s^2$$

$$\tau = 0.06 \text{ s}; V_0 = 0; V_1 = 0.35 \text{m/s}; V_3 = 0.75 \text{m/s}; V_5 = 1.15 \text{m/s}$$

3. Represent the average acceleration vector between $G_1 \& G_3$.

$$G_0 \stackrel{\xi_5}{=} G_{1_{2.7 \text{cm}}} G_2$$
 3.9cm G_3 5.1cm G_4 6.3cm G_5 7.5cm G_6 χ

$$\overrightarrow{a}_{1,3} = a_{1,3} \cdot \overrightarrow{\iota}$$

$$\vec{a}_{1,3} = 3.33.\vec{i} \ (m/s^2)$$

$$1cm \rightarrow 1.65m/s^2$$

$$x = ?? \rightarrow 3.33m/s^2$$

$$x = ?? \rightarrow 3.33m/s^2$$

$$x = \frac{1cm \times 3.33}{1.65} \approx 2cm$$

Instantaneous acceleration:

The average acceleration does not give an accurate value to describe the motion of a mobile.

Instantaneous acceleration is the exact description of the variation of the speed at a given instant.

$$M_0$$
 M_1 M_2 M_3 M_4 M_5

The instantaneous acceleration at M_2 : The instantaneous acceleration at M_4

$$a_2 = \frac{V_3 - V_1}{t_3 - t_1} \qquad a_4 = \frac{V_5 - V_3}{t_5 - t_3}$$

Be Smart ACADEMY

Instantaneous acceleration vector:

The instantaneous acceleration vector describes the variation of the speed at a given instant in a given direction.

$$\vec{V}_2 = V_2 \cdot \vec{\iota}$$

Application 6: The figure below shows the positions of a puck during an intervals of time $\tau = 40ms$. At $t_0 = 0s$.

$$M_{0 1cm}$$
 $M_{11.7cm}M_{2}$ 2.4cm M_{3} 3.1cm M_{4} 3.8cm M_{5} χ

- At $t_0 = 0s$, the puck starts from from M_0 with $V_0 = 0.1625$ m/s.
- 1. Calculate the instantaneous speeds V_2 ; V_3 and V_4 .
- 2. Calculate the instantaneous acceleration at M_1 and at M_3 .
- 3. Determine the characteristics of instantaneous acceleration vector at M_3 .

$$\tau = 40ms = (40 \div 1000) = 0.04 s; V_0 = 0.1625 m/s$$

1. Calculate the instantaneous speeds V_2 ; V_3 and V_4 .

$$M_{0 1cm}$$
 $M_{11.7cm}M_{2}$ 2.4cm $M_{3 3.1cm}$ $M_{4 3.8cm}$ $M_{5 \chi}$

$$V_2 = \frac{M_1 M_3}{t_3 - t_1} \implies V_2 = \frac{M_1 M_2 + M_2 M_3}{3\tau - \tau} \implies V_2 = \frac{(1.7 + 2.4) \times 10^{-2}}{2\tau}$$

$$V_2 = \frac{4.1 \times 10^{-2}}{2 \times 0.04}$$

AGADEIVIY $V_2 = 0.5125m/s$

$$\tau = 40ms = (40 \div 1000) = 0.04 s; V_0 = 0.1625 m/s$$

1. Calculate the instantaneous speeds V_2 ; V_3 and V_4 .

$$M_{0 1cm}$$
 $M_{11.7cm}M_{2}$ 2.4cm $M_{3 3.1cm}$ $M_{4 3.8cm}$ $M_{5 x}$

$$V_3 = \frac{M_2 M_4}{t_4 - t_2} \quad \Longrightarrow \quad V_3 = \frac{M_2 M_3 + M_3 M_4}{4\tau - 2\tau} \quad \Longrightarrow \quad V_3 = \frac{(2.4 + 3.1) \times 10^{-2}}{2\tau}$$

$$V_3 = \frac{5.5 \times 10^{-2}}{2 \times 0.04}$$

$$V_3 = 0.6875 m/s$$

$$\tau = 40ms = (40 \div 1000) = 0.04 s; V_0 = 0.1625 m/s.$$

1. Calculate the instantaneous speeds V_2 ; V_3 and V_4 .

$$M_{0 1cm}$$
 $M_{11.7cm}M_{2}$ 2.4cm M_{3} 3.1cm M_{4} 3.8cm M_{5} χ

$$V_4 = \frac{M_3 M_5}{t_5 - t_3} \implies V_4 = \frac{M_3 M_4 + M_4 M_5}{5\tau - 3\tau} \implies V_4 = \frac{(3.1 + 3.8) \times 10^{-2}}{2\tau}$$

$$V_4 = \frac{6.9 \times 10^{-2}}{2 \times 0.04}$$

 $V_4 = 0.8625 m/s$

$$\tau = 0.04 s$$
; $V_0 = 0.1625 m/s$; $V_2 = 0.5125 m/s$; $V_3 = 0.6875 m/s$; $V_4 = 0.8625 m/s$

2. Calculate the instantaneous acceleration at M_1 and at M_3 .

$$a_1 = \frac{V_2 - V_0}{t_2 - t_0}$$

$$a_1 = \frac{0.5125 - 0.1625}{2\tau - 0}$$

$$a_1 = \frac{0.35}{2 \times 0.04}$$

$$a_1 = 4.375 m/s^2$$

$$\tau = 0.04 s$$
; $V_0 = 0$; $V_2 = 0.5125 m/s$; $V_3 = 0.6875 m/s$; $V_4 = 0.8625 m/s$

2. Calculate the instantaneous acceleration at M_1 and at M_3 .

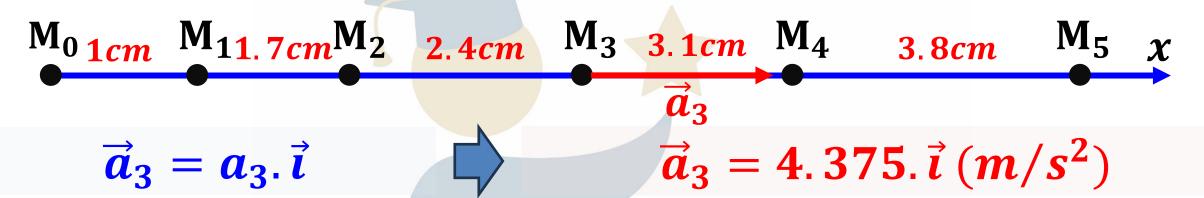
$$a_3 = \frac{V_4 - V_2}{\mathsf{t}_4 - \mathsf{t}_2}$$

$$a_3 = \frac{0.8625 - 0.5125}{4\tau - 2\tau}$$

$$a_3 = \frac{0.35}{2 \times \tau}$$

$$a_1 = 4.375 m/s^2$$

3. Determine the characteristics of instantaneous acceleration vector at M_3 .



Origin: M_3

Line of action: Horizontal

direction: Right

magnitude: $a_3 = 4.375m / s^2$

$$1cm \rightarrow 1.45m/s^2$$

$$x = ?? \rightarrow 4.375 m/s^2$$

$$x = \frac{1cm \times 4.375}{1.45} \approx 3cm$$

Important notes

If the value of a is positive (a>0)

If the value of a is negative (a<0):

The motion called accelerated.

V and a have same sense).

The motion called decelerated.

V and a have opposite sense).

